The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the nonconserved flanking sequences.
نویسندگان
چکیده
It is believed that CLAVATA3 (CLV3) encodes a peptide ligand that interacts with the CLV1/CLV2 receptor complex to limit the number of stem cells in the shoot apical meristem of Arabidopsis thaliana; however, the exact composition of the functional CLV3 product remains a mystery. A recent study on CLV3 shows that the CLV3/ESR (CLE) motif, together with the adjacent C-terminal sequence, is sufficient to execute CLV3 function when fused behind an N-terminal sequence of ERECTA. Here we show that most of the sequences flanking the CLE motif of CLV3 can be deleted without affecting CLV3 function. Using a liquid culture assay, we demonstrate that CLV3p, a synthetic peptide corresponding to the CLE motif of CLV3, is able to restrict the size of the shoot apical meristem in clv3 seedlings but not in clv1 seedlings. In accordance with this decrease in meristem size, application of CLV3p to in vitro-grown clv3 seedlings restricts the expression of the stem cell-promoting transcription factor WUSCHEL. Thus, we propose that the CLE motif is the functional region of CLV3 and that this region acts independently of its adjacent sequences.
منابع مشابه
Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain.
Secreted peptide ligands are known to play key roles in the regulation of plant growth, development, and environmental responses. However, phenotypes for surprisingly few such genes have been identified via loss-of-function mutant screens. To begin to understand the processes regulated by the CLAVATA3 (CLV3)/ESR (CLE) ligand gene family, we took a systems approach to gene identification and gai...
متن کاملStem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1.
Stem cell maintenance in the Arabidopsis shoot meristem is regulated by communication between the apical stem cells and the underlying organizing centre. Expression of the homeobox gene WUSCHEL in the organizing centre induces stem cell identity in the overlying neighbours, which then express the CLAVATA3 gene whose activity in turn restricts the size of the WUSCHEL expression domain. We have a...
متن کاملDiverse and conserved roles of CLE peptides.
The function of plant CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE) peptides in shoot meristem differentiation has been expanded in recent years to implicate roles in root growth and vascular development among different CLE family members. Recent evidence suggests that nematode pathogens within plant roots secrete ligand mimics of plant CLE peptides to modify selected host cells into...
متن کاملThe floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice.
To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the inflorescence and floral meristems. Likely du...
متن کاملBorder sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean
CLE (CLAVATA3/ESR-related) peptides are developmental regulators that are secreted into the apoplast. Little is known about the role of the sequences that flank CLE peptides in terms of their biological activity or how they are targeted by proteases that are known to liberate the final active CLE peptides from their precursor sequences. The biological activity of Medicago truncatula CLE36, whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 141 4 شماره
صفحات -
تاریخ انتشار 2006